

Generating function for Bell numbers

Gauranga Kumar Baishya

Tezpur University

April 2021

Partition of a set

A partition of a set S is an equivalence relation on S which is a collection of nonempty, pairwise disjoint sets whose union is S . The sets into which a set is partitioned are the classes of the partition.

Partition of a set

A partition of a set S is an equivalence relation on S which is a collection of nonempty, pairwise disjoint sets whose union is S . The sets into which a set is partitioned are the classes of the partition.

Example

- We can partition $[5]$ in several ways. One of them is $\{123\}\{4\}\{5\}$.

Partition of a set

A partition of a set S is an equivalence relation on S which is a collection of nonempty, pairwise disjoint sets whose union is S . The sets into which a set is partitioned are the classes of the partition.

Example

- We can partition $[5]$ in several ways. One of them is $\{123\}\{4\}\{5\}$.
- This is a 3-class partition of $[5]$.

Partition of a set

A partition of a set S is an equivalence relation on S which is a collection of nonempty, pairwise disjoint sets whose union is S . The sets into which a set is partitioned are the classes of the partition.

Example

- We can partition $[5]$ in several ways. One of them is $\{123\}\{4\}\{5\}$.
- This is a 3-class partition of $[5]$.
- Here is a list of all 7 partitions of $[4]$ into 2 classes:

$\{12\}\{34\}$; $\{13\}\{24\}$; $\{14\}\{23\}$; $\{123\}\{4\}$; $\{124\}\{3\}$; $\{134\}\{2\}$; $\{1\}\{234\}$.

Stirling number of the second kind

Stirling number of the second kind

Let positive integers n, k be given. Consider the collection of all possible partitions of $[n]$ into k classes. There are exactly $\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\}$ of them, called the Stirling number of the second kind.

Stirling number of the second kind

Stirling number of the second kind

Let positive integers n, k be given. Consider the collection of all possible partitions of $[n]$ into k classes. There are exactly $\{n\}_k$ of them, called the Stirling number of the second kind.

Recurrence relation for the Stirling number of the second kind

- We carve up this collection of all possible partitions of $[n]$ into k classes into two piles.

Stirling number of the second kind

Stirling number of the second kind

Let positive integers n, k be given. Consider the collection of all possible partitions of $[n]$ into k classes. There are exactly $\{n\}_k$ of them, called the Stirling number of the second kind.

Recurrence relation for the Stirling number of the second kind

- We carve up this collection of all possible partitions of $[n]$ into k classes into two piles.
- The first pile consists of all those partitions of $[n]$ into k classes in which the letter n lives in a class all by itself.

Stirling number of the second kind

Stirling number of the second kind

Let positive integers n, k be given. Consider the collection of all possible partitions of $[n]$ into k classes. There are exactly $\{n\}_k$ of them, called the Stirling number of the second kind.

Recurrence relation for the Stirling number of the second kind

- We carve up this collection of all possible partitions of $[n]$ into k classes into two piles.
- The first pile consists of all those partitions of $[n]$ into k classes in which the letter n lives in a class all by itself.
- The second pile consists of all other partitions in which the letter n lives in a class with other letters.

Stirling number of the second kind

- Consider the first pile.

Stirling number of the second kind

- Consider the first pile.
- Imagine marching through that pile and erasing the class $\{n\}$ that appears in every single partition in the pile.

Stirling number of the second kind

- Consider the first pile.
- Imagine marching through that pile and erasing the class $\{n\}$ that appears in every single partition in the pile.
- If that were done, then what would remain after the erasures is exactly the complete collection of all partitions of $[n - 1]$ into $k - 1$ classes.

Stirling number of the second kind

- Consider the first pile.
- Imagine marching through that pile and erasing the class $\{n\}$ that appears in every single partition in the pile.
- If that were done, then what would remain after the erasures is exactly the complete collection of all partitions of $[n - 1]$ into $k - 1$ classes.
- There are $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ of these, so there must be $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ partitions in the first pile.

Stirling number of the second kind

- Consider the first pile.
- Imagine marching through that pile and erasing the class $\{n\}$ that appears in every single partition in the pile.
- If that were done, then what would remain after the erasures is exactly the complete collection of all partitions of $[n - 1]$ into $k - 1$ classes.
- There are $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ of these, so there must be $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ partitions in the first pile.
- Now consider the second pile.

Stirling number of the second kind

- Consider the first pile.
- Imagine marching through that pile and erasing the class $\{n\}$ that appears in every single partition in the pile.
- If that were done, then what would remain after the erasures is exactly the complete collection of all partitions of $[n - 1]$ into $k - 1$ classes.
- There are $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ of these, so there must be $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ partitions in the first pile.
- Now consider the second pile.
- There the letter n always lives in a class with other letters.

Stirling number of the second kind

- Consider the first pile.
- Imagine marching through that pile and erasing the class $\{n\}$ that appears in every single partition in the pile.
- If that were done, then what would remain after the erasures is exactly the complete collection of all partitions of $[n - 1]$ into $k - 1$ classes.
- There are $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ of these, so there must be $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ partitions in the first pile.
- Now consider the second pile.
- There the letter n always lives in a class with other letters.
- Therefore, if we march through that pile and erase the letter n wherever it appears, our new pile would contain partitions of $n - 1$ letters into k classes.

Stirling number of the second kind

- Consider the first pile.
- Imagine marching through that pile and erasing the class $\{n\}$ that appears in every single partition in the pile.
- If that were done, then what would remain after the erasures is exactly the complete collection of all partitions of $[n - 1]$ into $k - 1$ classes.
- There are $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ of these, so there must be $\left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$ partitions in the first pile.
- Now consider the second pile.
- There the letter n always lives in a class with other letters.
- Therefore, if we march through that pile and erase the letter n wherever it appears, our new pile would contain partitions of $n - 1$ letters into k classes.
- However, each one of these partitions would appear not just once, but k times.

Stirling number of the second kind

- For example, in the list of 2-class partitions of [4] the second pile contains the partitions $\{12\}\{34\}$; $\{13\}\{24\}$; $\{14\}\{23\}$; $\{124\}\{3\}$; $\{134\}\{2\}$; $\{1\}\{234\}$.

Stirling number of the second kind

- For example, in the list of 2-class partitions of [4] the second pile contains the partitions $\{12\}\{34\}$; $\{13\}\{24\}$; $\{14\}\{23\}$; $\{124\}\{3\}$; $\{134\}\{2\}$; $\{1\}\{234\}$.
- After we delete '4' from every one of them we get the list $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$; $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$.

Stirling number of the second kind

- For example, in the list of 2-class partitions of [4] the second pile contains the partitions $\{12\}\{34\}$; $\{13\}\{24\}$; $\{14\}\{23\}$; $\{124\}\{3\}$; $\{134\}\{2\}$; $\{1\}\{234\}$.
- After we delete '4' from every one of them we get the list $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$; $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$.
- What we are looking at is the list of all partitions of [3] into 2 classes, where each partition has been written down twice.

Stirling number of the second kind

- For example, in the list of 2-class partitions of [4] the second pile contains the partitions $\{12\}\{34\}$; $\{13\}\{24\}$; $\{14\}\{23\}$; $\{124\}\{3\}$; $\{134\}\{2\}$; $\{1\}\{234\}$.
- After we delete '4' from every one of them we get the list $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$; $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$.
- What we are looking at is the list of all partitions of [3] into 2 classes, where each partition has been written down twice.
- Hence this list contains exactly $2\binom{3}{2}$ partitions.

Stirling number of the second kind

- For example, in the list of 2-class partitions of [4] the second pile contains the partitions $\{12\}\{34\}$; $\{13\}\{24\}$; $\{14\}\{23\}$; $\{124\}\{3\}$; $\{134\}\{2\}$; $\{1\}\{234\}$.
- After we delete '4' from every one of them we get the list $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$; $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$.
- What we are looking at is the list of all partitions of [3] into 2 classes, where each partition has been written down twice.
- Hence this list contains exactly $2\binom{3}{2}$ partitions.
- Therefore in the general case the second pile must contain $k\binom{n-1}{k}$ partitions before the erasure of n .

Stirling number of the second kind

- For example, in the list of 2-class partitions of [4] the second pile contains the partitions $\{12\}\{34\}$; $\{13\}\{24\}$; $\{14\}\{23\}$; $\{124\}\{3\}$; $\{134\}\{2\}$; $\{1\}\{234\}$.
- After we delete '4' from every one of them we get the list $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$; $\{12\}\{3\}$; $\{13\}\{2\}$; $\{1\}\{23\}$.
- What we are looking at is the list of all partitions of [3] into 2 classes, where each partition has been written down twice.
- Hence this list contains exactly $2\binom{3}{2}$ partitions.
- Therefore in the general case the second pile must contain $k\binom{n-1}{k}$ partitions before the erasure of n .
- It must therefore be true that

$$\binom{n}{k} = \binom{n-1}{k-1} + k\binom{n-1}{k}.$$

Generating Functions

What is a generating function?

- A generating function is a way of encoding an infinite sequence of numbers (a_n) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence.

What is a generating function?

- A generating function is a way of encoding an infinite sequence of numbers (a_n) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence.
- Lets try to find the generating function for the sum of face values of 1 & 2 dice.

What is a generating function?

- A generating function is a way of encoding an infinite sequence of numbers (a_n) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence.
- Lets try to find the generating function for the sum of face values of 1 & 2 dice.
- For a standard six-sided die, there is exactly 1 way of rolling each of the numbers from 1 to 6. Hence, we can encode this as the power series $R_1(x) = x^1 + x^2 + x^3 + x^4 + x^5 + x^6$.

What is a generating function?

- A generating function is a way of encoding an infinite sequence of numbers (a_n) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence.
- Let's try to find the generating function for the sum of face values of 1 & 2 dice.
- For a standard six-sided die, there is exactly 1 way of rolling each of the numbers from 1 to 6. Hence, we can encode this as the power series $R_1(x) = x^1 + x^2 + x^3 + x^4 + x^5 + x^6$.
- The exponents represent the value rolled on the die, and the coefficients represent the number of ways this value can be attained.

Generating Functions

- For rolling 2 dice, we could likewise list out the possible sums, and arrive at

$$R_2(x) = x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 + 6x^7 + 5x^8 + 4x^9 + 3x^{10} + 2x^{11} + x^{12}.$$

Generating Functions

- For rolling 2 dice, we could likewise list out the possible sums, and arrive at

$$R_2(x) = x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 + 6x^7 + 5x^8 + 4x^9 + 3x^{10} + 2x^{11} + x^{12}.$$

- A more direct method is to realize that $R_2(x) = [R_1(x)]^2!$

Generating Functions

- For rolling 2 dice, we could likewise list out the possible sums, and arrive at

$$R_2(x) = x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 + 6x^7 + 5x^8 + 4x^9 + 3x^{10} + 2x^{11} + x^{12}.$$

- A more direct method is to realize that $R_2(x) = [R_1(x)]^2!$

Types of generating function

- Ordinary Generating Function:** $F(x) = \sum_{n=0}^{\infty} a_n x^n.$

Generating Functions

- For rolling 2 dice, we could likewise list out the possible sums, and arrive at

$$R_2(x) = x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 + 6x^7 + 5x^8 + 4x^9 + 3x^{10} + 2x^{11} + x^{12}.$$

- A more direct method is to realize that $R_2(x) = [R_1(x)]^2!$

Types of generating function

- Ordinary Generating Function:** $F(x) = \sum_{n=0}^{\infty} a_n x^n.$
- Exponential generating function:** $G(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}.$

Generating Functions

- For rolling 2 dice, we could likewise list out the possible sums, and arrive at

$$R_2(x) = x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 + 6x^7 + 5x^8 + 4x^9 + 3x^{10} + 2x^{11} + x^{12}.$$

- A more direct method is to realize that $R_2(x) = [R_1(x)]^2!$

Types of generating function

- Ordinary Generating Function:** $F(x) = \sum_{n=0}^{\infty} a_n x^n.$
- Exponential generating function:** $G(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}.$
- The Poisson generating function:** $PG(a_n; x) = \sum_{n=0}^{\infty} a_n e^{-x} \frac{x^n}{n!}$

Generating Functions

- For rolling 2 dice, we could likewise list out the possible sums, and arrive at

$$R_2(x) = x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 + 6x^7 + 5x^8 + 4x^9 + 3x^{10} + 2x^{11} + x^{12}.$$

- A more direct method is to realize that $R_2(x) = [R_1(x)]^2$!

Types of generating function

- Ordinary Generating Function:** $F(x) = \sum_{n=0}^{\infty} a_n x^n.$
- Exponential generating function:** $G(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}.$
- The Poisson generating function:** $PG(a_n; x) = \sum_{n=0}^{\infty} a_n e^{-x} \frac{x^n}{n!}$
- etc.**

Generating function for Stirling Numbers

- Let us take a generating function $B_k(x) = \sum_n \left\{ \begin{matrix} n \\ k \end{matrix} \right\} x^n$ and try to find it using the recurrence relation for Stirling numbers of second kind.

Generating function for Stirling Numbers

- Let us take a generating function $B_k(x) = \sum_n \left\{ \begin{matrix} n \\ k \end{matrix} \right\} x^n$ and try to find it using the recurrence relation for Stirling numbers of second kind.
- We multiply

$$\left\{ \begin{matrix} n \\ k \end{matrix} \right\} = \left\{ \begin{matrix} n-1 \\ k-1 \end{matrix} \right\} + k \left\{ \begin{matrix} n-1 \\ k \end{matrix} \right\}$$

by x^n and sum on n to get

$$B_k(x) = xB_{k-1}(x) + kB_k(x)$$

where $k \geq 1$ and $B_0(x) = 1$.

Generating function for Stirling Numbers

- Let us take a generating function $B_k(x) = \sum_n \left\{ \begin{matrix} n \\ k \end{matrix} \right\} x^n$ and try to find it using the recurrence relation for Stirling numbers of second kind.
- We multiply

$$\left\{ \begin{matrix} n \\ k \end{matrix} \right\} = \left\{ \begin{matrix} n-1 \\ k-1 \end{matrix} \right\} + k \left\{ \begin{matrix} n-1 \\ k \end{matrix} \right\}$$

by x^n and sum on n to get

$$B_k(x) = xB_{k-1}(x) + kxB_k(x)$$

where $k \geq 1$ and $B_0(x) = 1$.

- This leads to

$$B_k(x) = \frac{x}{1-kx} B_{k-1}(x)$$

and to the formula

$$B_k(x) = \sum_n \left\{ \begin{matrix} n \\ k \end{matrix} \right\} x^n = \frac{x^k}{(1-x)(1-2x)\cdots(1-kx)}, k \geq 0.$$

Generating function for Stirling Numbers

- Continuing our process to find an explicit formula for Stirling numbers of the second kind, we expand the partial fraction in question

$$\frac{1}{(1-x)(1-2x)\cdots(1-kx)} = \sum_{j=1}^k \frac{\alpha_j}{(1-jx)}.$$

Generating function for Stirling Numbers

- Continuing our process to find an explicit formula for Stirling numbers of the second kind, we expand the partial fraction in question

$$\frac{1}{(1-x)(1-2x)\cdots(1-kx)} = \sum_{j=1}^k \frac{\alpha_j}{(1-jx)}.$$

- To find the α 's, say α_r for $1 \leq r \leq k$, we multiply both sides by $1-rx$ and put $x = 1/r$. We get

$$\begin{aligned}\alpha_r &= \frac{1}{(1-1/r)\cdots(1-(r-1)/r)(1-(r+1)/r)\cdots(1-k/r)} \\ &= (-1)^{k-r} \frac{r^{k-1}}{(r-1)!(k-r)!}.\end{aligned}$$

Generating function for Stirling Numbers

- Now, we use the formula for $B_k(x)$ and α_r to get an explicit formula for $\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\}$ where $n \geq k$ (in the following process, $[x^n]$ denotes the coefficient of x^n in the expression):

Generating function for Stirling Numbers

- Now, we use the formula for $B_k(x)$ and α_r to get an explicit formula for $\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\}$ where $n \geq k$ (in the following process, $[x^n]$ denotes the coefficient of x^n in the expression):

$$\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\} = [x^n] \left\{ \frac{x^k}{(1-x)(1-2x)\cdots(1-kx)} \right\}$$

Generating function for Stirling Numbers

- Now, we use the formula for $B_k(x)$ and α_r to get an explicit formula for $\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\}$ where $n \geq k$ (in the following process, $[x^n]$ denotes the coefficient of x^n in the expression):

$$\begin{aligned}\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\} &= [x^n] \left\{ \frac{x^k}{(1-x)(1-2x)\cdots(1-kx)} \right\} \\ &= [x^{n-k}] \sum_{r=1}^k \frac{\alpha_r}{1-rx}\end{aligned}$$

Generating function for Stirling Numbers

- Now, we use the formula for $B_k(x)$ and α_r to get an explicit formula for $\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\}$ where $n \geq k$ (in the following process, $[x^n]$ denotes the coefficient of x^n in the expression):

$$\begin{aligned}\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\} &= [x^n] \left\{ \frac{x^k}{(1-x)(1-2x)\cdots(1-kx)} \right\} \\ &= [x^{n-k}] \sum_{r=1}^k \frac{\alpha_r}{1-rx} \\ &= \sum_{r=1}^k \alpha_r r^{n-k}\end{aligned}$$

Generating function for Stirling Numbers

- Now, we use the formula for $B_k(x)$ and α_r to get an explicit formula for $\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\}$ where $n \geq k$ (in the following process, $[x^n]$ denotes the coefficient of x^n in the expression):

$$\begin{aligned}\left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\} &= [x^n] \left\{ \frac{x^k}{(1-x)(1-2x)\cdots(1-kx)} \right\} \\ &= [x^{n-k}] \sum_{r=1}^k \frac{\alpha_r}{1-rx} \\ &= \sum_{r=1}^k \alpha_r r^{n-k} \\ &= \sum_{r=1}^k (-1)^{k-r} \frac{r^n}{r!(k-r)!}.\end{aligned}$$

Bell Numbers, $b(n)$

- The Stirling number $\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \}$ is the number of ways of partitioning a set of n elements into k classes.

Bell Numbers, $b(n)$

- The Stirling number $\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \}$ is the number of ways of partitioning a set of n elements into k classes.
- Suppose we don't particularly care how many classes there are, but we want to know the number of ways to partition a set of n elements.

Bell Numbers, $b(n)$

- The Stirling number $\left\{ \begin{matrix} n \\ k \end{matrix} \right\}$ is the number of ways of partitioning a set of n elements into k classes.
- Suppose we don't particularly care how many classes there are, but we want to know the number of ways to partition a set of n elements.
- Let these numbers be $b(n)$. They are called the Bell numbers.
(Conventionally we take $b(0) = 1$.)

Bell Numbers, $b(n)$

- The Stirling number $\left\{ \begin{matrix} n \\ k \end{matrix} \right\}$ is the number of ways of partitioning a set of n elements into k classes.
- Suppose we don't particularly care how many classes there are, but we want to know the number of ways to partition a set of n elements.
- Let these numbers be $b(n)$. They are called the Bell numbers.
(Conventionally we take $b(0) = 1$.)
- The sequence of Bell numbers begins as 1, 1, 2, 5, 15, 52,

Bell Numbers, $b(n)$

- The Stirling number $\left\{ \begin{matrix} n \\ k \end{matrix} \right\}$ is the number of ways of partitioning a set of n elements into k classes.
- Suppose we don't particularly care how many classes there are, but we want to know the number of ways to partition a set of n elements.
- Let these numbers be $b(n)$. They are called the Bell numbers.
(Conventionally we take $b(0) = 1$.)
- The sequence of Bell numbers begins as 1, 1, 2, 5, 15, 52,
- Can we find an explicit formula for the Bell numbers, $b(n)$?

Bell Numbers, $b(n)$

- The Stirling number $\{ \binom{n}{k} \}$ is the number of ways of partitioning a set of n elements into k classes.
- Suppose we don't particularly care how many classes there are, but we want to know the number of ways to partition a set of n elements.
- Let these numbers be $b(n)$. They are called the Bell numbers.
(Conventionally we take $b(0) = 1$.)
- The sequence of Bell numbers begins as $1, 1, 2, 5, 15, 52, \dots$
- Can we find an explicit formula for the Bell numbers, $b(n)$?
- Yes, we can ! If we sum the formula of Stirling number from $k = 1$ to n we will have an explicit formula for $b(n)$.

Calculating $b(n)$

- To calculate the Bell numbers, we can sum the formula for Stirling number from $k = 1$ to M , where M is any number that is greater than n .

Calculating $b(n)$

- To calculate the Bell numbers, we can sum the formula for Stirling number from $k = 1$ to M , where M is any number that is greater than n .
- Thus the result is that

$$\begin{aligned}b(n) &= \sum_{k=1}^M \sum_{r=1}^k (-1)^{k-r} \frac{r^n}{(r)!(k-r)!} \\&= \sum_{r=1}^M \frac{r^{n-1}}{(r-1)!} \left\{ \sum_{k=r}^M \frac{(-1)^{k-r}}{(k-r)!} \right\}.\end{aligned}$$

Calculating $b(n)$

- To calculate the Bell numbers, we can sum the formula for Stirling number from $k = 1$ to M , where M is any number that is greater than n .
- Thus the result is that

$$\begin{aligned}b(n) &= \sum_{k=1}^M \sum_{r=1}^k (-1)^{k-r} \frac{r^n}{(r)!(k-r)!} \\&= \sum_{r=1}^M \frac{r^{n-1}}{(r-1)!} \left\{ \sum_{k=r}^M \frac{(-1)^{k-r}}{(k-r)!} \right\}.\end{aligned}$$

- But now the number M is arbitrary, except that $M \geq n$. Since the partial sum of the exponential series in the curly braces above is so inviting, let's keep n and r fixed, and let $M \rightarrow \infty$.

Calculating $b(n)$

- This gives the following remarkable formula for the Bell numbers:

$$b(n) = \frac{1}{e} \sum_{r \geq 0} \frac{r^n}{r!}$$

for $n \geq 0$.

Calculating $b(n)$

- This gives the following remarkable formula for the Bell numbers:

$$b(n) = \frac{1}{e} \sum_{r \geq 0} \frac{r^n}{r!}$$

for $n \geq 0$.

- The above formula is not feasible for computation and we try to look for a generating function of the Bell numbers in the form:

$$B(x) = \sum_{n \geq 0} \frac{b(n)}{n!} x^n.$$

Calculating $b(n)$

- We find $B(x)$ explicitly by multiplying both sides of the formula by $\frac{x^n}{n!}$ and sum over all $n \geq 1$:

$$B(x) - 1 = \frac{1}{e} \sum_{n \geq 1} \frac{x^n}{n!} \sum_{r \geq 1} \frac{r^{n-1}}{(r-1)!}$$

Calculating $b(n)$

- We find $B(x)$ explicitly by multiplying both sides of the formula by $\frac{x^n}{n!}$ and sum over all $n \geq 1$:

$$B(x) - 1 = \frac{1}{e} \sum_{n \geq 1} \frac{x^n}{n!} \sum_{r \geq 1} \frac{r^{n-1}}{(r-1)!}$$

Calculating $b(n)$

- We find $B(x)$ explicitly by multiplying both sides of the formula by $\frac{x^n}{n!}$ and sum over all $n \geq 1$:

$$\begin{aligned} B(x) - 1 &= \frac{1}{e} \sum_{n \geq 1} \frac{x^n}{n!} \sum_{r \geq 1} \frac{r^{n-1}}{(r-1)!} \\ &= \frac{1}{e} \sum_{r \geq 1} \frac{1}{r!} \sum_{n \geq 1} \frac{(rx)^n}{n!} \end{aligned}$$

Calculating $b(n)$

- We find $B(x)$ explicitly by multiplying both sides of the formula by $\frac{x^n}{n!}$ and sum over all $n \geq 1$:

$$\begin{aligned} B(x) - 1 &= \frac{1}{e} \sum_{n \geq 1} \frac{x^n}{n!} \sum_{r \geq 1} \frac{r^{n-1}}{(r-1)!} \\ &= \frac{1}{e} \sum_{r \geq 1} \frac{1}{r!} \sum_{n \geq 1} \frac{(rx)^n}{n!} \\ &= \frac{1}{e} \{e^{ex} - e\} \end{aligned}$$

Calculating $b(n)$

- We find $B(x)$ explicitly by multiplying both sides of the formula by $\frac{x^n}{n!}$ and sum over all $n \geq 1$:

$$\begin{aligned} B(x) - 1 &= \frac{1}{e} \sum_{n \geq 1} \frac{x^n}{n!} \sum_{r \geq 1} \frac{r^{n-1}}{(r-1)!} \\ &= \frac{1}{e} \sum_{r \geq 1} \frac{1}{r!} \sum_{n \geq 1} \frac{(rx)^n}{n!} \\ &= \frac{1}{e} \{e^{ex} - e\} \\ &= e^{ex-1} - 1. \end{aligned}$$

- So we get that the exponential generating function of the Bell numbers is e^{ex-1} i.e., the coefficient of $x^n/n!$ in the power series expansion of e^{ex-1} is the number of partitions of a set of n elements.

References

Herbert S. Wilf, generatingfunctionology,
Third Edition, A K Peters, Ltd., 2006.

Wolfram Mathworld
Bell Number

<https://mathworld.wolfram.com/BellNumber.html>