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Introduction

Partition of a set

A partition of a set S is an equivalence relation on S which is a collection
of nonempty, pairwise disjoint sets whose union is S . The sets into which
a set is partitioned are the classes of the partition.

Example

We can partition [5] in several ways. One of them is {123}{4}{5}.
This is a 3-class partition of [5].

Here is a list of all 7 partitions of [4] into 2 classes:

{12}{34}; {13}{24}; {14}{23}; {123}{4}; {124}{3}; {134}{2};
{1}{234}.
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Stirling number of the second kind

Stirling number of the second kind

Let positive integers n, k be given. Consider the collection of all possible
partitions of [n] into k classes. There are exactly

{ n
k

}
of them, called the

Stirling number of the second kind.

Recurrence relation for the Stirling number of the second kind

We carve up this collection of all possible partitions of [n] into k
classes into two piles.

The first pile consists of all those partitions of [n] into k classes in
which the letter n lives in a class all by itself.

The second pile consists of all other partitions in which the letter n
lives in a class with other letters.
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Stirling number of the second kind

Consider the first pile.

Imagine marching through that pile and erasing the class {n} that
appears in every single partition in the pile.

If that were done, then what would remain after the erasures is exactly
the complete collection of all partitions of [n − 1] into k − 1 classes.

There are
{

n−1
k−1

}
of these, so there must be

{
n−1
k−1

}
partitions in the

first pile.

Now consider the second pile.

There the letter n always lives in a class with other letters.

Therefore, if we march through that pile and erase the letter n
wherever it appears, our new pile would contain partitions of n − 1
letters into k classes.

However, each one of these partitions would appear not just once, but
k times.
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Stirling number of the second kind

For example, in the list of 2-class partitions of [4] the second pile
contains the partitions {12}{34}; {13}{24}; {14}{23}; {124}{3};
{134}{2}; {1}{234}.

After we delete ’4’ from every one of them we get the list {12}{3};
{13}{2}; {1}{23}; {12}{3}; {13}{2}; {1}{23}.
What we are looking at is the list of all partitions of [3] into 2 classes,
where each partition has been written down twice.

Hence this list contains exactly 2
{

3
2

}
partitions.

Therefore in the general case the second pile must contain k
{

n−1
k

}
partitions before the erasure of n.

It must therefore be true that{ n
k

}
=

{
n−1
k−1

}
+ k

{
n−1
k

}
.
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Generating Functions

What is a generating function?

A generating function is a way of encoding an infinite sequence of
numbers (an) by treating them as the coefficients of a formal power
series. This series is called the generating function of the sequence.

Lets try to find the generating function for the sum of face values of 1
& 2 dice.

For a standard six-sided die, there is exactly 1 way of rolling each of
the numbers from 1 to 6. Hence, we can encode this as the power
series R1(x) = x1 + x2 + x3 + x4 + x5 + x6.

The exponents represent the value rolled on the die, and the
coefficients represent the number of ways this value can be attained.
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Generating Functions

For rolling 2 dice, we could likewise list out the possible sums, and
arrive at
R2(x) = x2+2x3+3x4+4x5+5x6+6x7+5x8+4x9+3x10+2x11+x12.

A more direct method is to realize that R2(x) = [R1(x)]
2!

Types of generating function

Ordinary Generating Function: F (x) =
∞∑
n=0

anx
n.

Exponential generating function: G(x) =
∞∑
n=0

an
xn

n!
.

The Poisson generating function: PG(an; x) =
∞∑
n=0

ane
−x x

n

n!

etc.
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Generating function for Stirling Numbers

Let us take a generating function Bk(x) =
∑

n

{ n
k

}
xn and try to find

it using the recurrence relation for Stirling numbers of second kind.

We multiply { n
k

}
=

{
n−1
k−1

}
+ k

{
n−1
k

}
by xn and sum on n to get

Bk(x) = xBk−1(x) + kxBk(x)

where k ≥ 1 and B0(x) = 1.

This leads to
Bk(x) =

x

1− kx
Bk−1(x)

and to the formula

Bk(x) =
∑
n

{ n
k

}
xn =

xk

(1− x)(1− 2x) · · · (1− kx)
, k ≥ 0.
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Generating function for Stirling Numbers

Continuing our process to find an explicit formula for Stirling numbers
of the second kind, we expand the partial fraction in question

1

(1− x)(1− 2x) · · · (1− kx)
=

k∑
j=1

αj

(1− jx)
.

To find the α’s, say αr for 1 ≤ r ≤ k , we multiply both sides by
1− rx and put x = 1/r . We get

αr =
1

(1− 1/r) · · · (1− (r − 1)/r)(1− (r + 1)/r) · · · (1− k/r)

= (−1)k−r rk−1

(r − 1)!(k − r)!
.
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Generating function for Stirling Numbers

Now, we use the formula for Bk(x) and αr to get an explicit formula
for

{ n
k

}
where n ≥ k (in the following process, [xn] denotes the
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Bell Numbers, b(n)

The Stirling number
{ n
k

}
is the number of ways of partitioning a set

of n elements into k classes.

Suppose we don’t particularly care how many classes there are, but
we want to know the number of ways to partition a set of n elements.

Let these numbers be b(n). They are called the Bell numbers.
(Conventionally we take b(0) = 1.)

The sequence of Bell numbers begins as 1, 1, 2, 5, 15, 52, . . ..

Can we find an explicit formula for the Bell numbers, b(n)?

Yes, we can ! If we sum the formula of Stirling number from k = 1 to
n we will have an explicit formula for b(n).
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Calculating b(n)

To calculate the Bell numbers, we can sum the formula for Stirling
number from k = 1 to M, where M is any number that is greater
than n.

Thus the result is that

b(n) =
M∑
k=1

k∑
r=1

(−1)k−r rn

(r)!(k − r)!

=
M∑
r=1

rn−1

(r − 1)!


M∑
k=r

(−1)k−r

(k − r)!

 .

But now the number M is arbitrary, except that M ≥ n. Since the
partial sum of the exponential series in the curly braces above is so
inviting, let’s keep n and r fixed, and let M −→ ∞.
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Calculating b(n)

This gives the following remarkable formula for the Bell numbers:

b(n) =
1

e

∑
r≥0

rn

r !

for n ≥ 0.

The above formula is not feasible for computation and we try to look
for a generating function of the Bell numbers in the form:

B(x) =
∑
n≥0

b(n)

n!
xn.
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Calculating b(n)

We find B(x) explicitly by multiplying both sides of the formula by xn

n!
and sum over all n ≥ 1:

B(x)− 1 =
1

e

∑
n≥1

xn

n!

∑
r≥1

rn−1

(r − 1)!

=
1

e

∑
r≥1

1

r !

∑
n≥1

(rx)n

n!

=
1

e
{eex − e}

= ee
x−1 − 1.

So we get that the exponential generating function of the Bell
numbers is ee

x−1 i.e., the coefficient of xn/n! in the power series
expansion of ee

x−1 is the number of partitions of a set of n elements.
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