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Historical Background

Perceptual grouping in vision
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Gestalt’s Law
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Selecting the best partition

Two aspects to consider here -

• First aspect

• Single correct answer may not exist.
• Depends on prior world knowledge - Important to specify
• Could be high level, mid level or low level
• Low level - brightness, color, texture etc.
High/mid level - Symmetry, object models etc.

• Second aspect

• Hierarchy of partitioning
• Tree structure corresponding to hierarchical partitioning better than a
single flat partition

Low level knowledge - Hierarchical partitions.
High level knowledge - Confirm the segments
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Graph Theoretic Formulation

G = (V ,E )

• Weighted undirected graph

• V is set of points in feature space

• E is set of edges each formed between every node pair

Goal: Partition V into disjoint V1,V2, ...,Vm where nodes in a particular
Vi are highly similar and across Vi and Vj are highly dissimilar

1 What is the precise criterion for a good partition?

2 How can such a partition be computed efficiently?
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Grouping as Graph Partitioning

Remove edges connecting the nominated partitions (A and B)

End Gain: A,B ⊂ V ,A ∪ B = V ,A ∩ B = ϕ
Degree of dissimilarity (assuming edge weight ∝1/distance between nodes)

cut(A,B) =
∑

u∈A,v∈B
w(u, b) (1)

Optimal bipartitioning minimizes the cut value
Wu and Leahy proposed a clustering approach based on MinCut

Linear Algebra and its Applications [0.2in] Gauranga Kumar Baishya (MDS202325) Hiba AP (MDS202326) Esha Bhattacharyya (MDS202324)Normalized Cuts and Image Segmentation February 11, 2025 11 / 37



Grouping as Graph Partitioning

Remove edges connecting the nominated partitions (A and B)
End Gain: A,B ⊂ V ,A ∪ B = V ,A ∩ B = ϕ

Degree of dissimilarity (assuming edge weight ∝1/distance between nodes)

cut(A,B) =
∑

u∈A,v∈B
w(u, b) (1)

Optimal bipartitioning minimizes the cut value
Wu and Leahy proposed a clustering approach based on MinCut

Linear Algebra and its Applications [0.2in] Gauranga Kumar Baishya (MDS202325) Hiba AP (MDS202326) Esha Bhattacharyya (MDS202324)Normalized Cuts and Image Segmentation February 11, 2025 11 / 37



Grouping as Graph Partitioning

Remove edges connecting the nominated partitions (A and B)
End Gain: A,B ⊂ V ,A ∪ B = V ,A ∩ B = ϕ
Degree of dissimilarity (assuming edge weight ∝1/distance between nodes)

cut(A,B) =
∑

u∈A,v∈B
w(u, b) (1)

Optimal bipartitioning minimizes the cut value
Wu and Leahy proposed a clustering approach based on MinCut

Linear Algebra and its Applications [0.2in] Gauranga Kumar Baishya (MDS202325) Hiba AP (MDS202326) Esha Bhattacharyya (MDS202324)Normalized Cuts and Image Segmentation February 11, 2025 11 / 37



Grouping as Graph Partitioning

Remove edges connecting the nominated partitions (A and B)
End Gain: A,B ⊂ V ,A ∪ B = V ,A ∩ B = ϕ
Degree of dissimilarity (assuming edge weight ∝1/distance between nodes)

cut(A,B) =
∑

u∈A,v∈B
w(u, b) (1)

Optimal bipartitioning minimizes the cut value

Wu and Leahy proposed a clustering approach based on MinCut

Linear Algebra and its Applications [0.2in] Gauranga Kumar Baishya (MDS202325) Hiba AP (MDS202326) Esha Bhattacharyya (MDS202324)Normalized Cuts and Image Segmentation February 11, 2025 11 / 37



Grouping as Graph Partitioning

Remove edges connecting the nominated partitions (A and B)
End Gain: A,B ⊂ V ,A ∪ B = V ,A ∩ B = ϕ
Degree of dissimilarity (assuming edge weight ∝1/distance between nodes)

cut(A,B) =
∑

u∈A,v∈B
w(u, b) (1)

Optimal bipartitioning minimizes the cut value
Wu and Leahy proposed a clustering approach based on MinCut

Linear Algebra and its Applications [0.2in] Gauranga Kumar Baishya (MDS202325) Hiba AP (MDS202326) Esha Bhattacharyya (MDS202324)Normalized Cuts and Image Segmentation February 11, 2025 11 / 37



Mincut
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Mincut

Figure: Original image Figure: Ncut

Figure: Min cut
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Normalized Cut

NCut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(B,A)

assoc(B,V )

Nassoc(A,B) =
assoc(A,A)

assoc(A,V )
+

assoc(B,B)

assoc(B,V )

NCut(A, B)=2-Nassoc(A,B) ∴ NCut(A,B) ∝ 1/Nassoc(A,B) (2)
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Computing the Optimal Partition

(A,B) is a given partition of graph (V, E)

Setup:

• x is N =| V | dimensional indicator vector

• d(i) =
∑

j w(i , j)

• D is a NxN diagonal matrix where Dii = di
• W is a NxN symmetric matrix with W (i , j) = wij

• k =

∑
xi>0 di∑
i di

and b =
k

(1− k)

4NCut(A,B) =
[(1+ x)− b(1− x)]T (D −W )[(1+ x)− b(1− x)]

b1TD1

setting y =
(1 + x)− b(1− x)

2
gives yTDy = b1TD1 and yTD1 = 0

Therefore,

minxNcut(x) = miny
yT (D −W )y

yTDy

with y(i) ∈ {1,−b} and yTD1 = 0
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(1 + x)− b(1− x)

2
gives yTDy = b1TD1 and yTD1 = 0

Therefore,

minxNcut(x) = miny
yT (D −W )y

yTDy

with y(i) ∈ {1,−b} and yTD1 = 0
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Continued..

If y is relaxed on real values, we get

yi = arg .minyTD1=0
yT (D −W )y

yTDy
(3)

We can convert this to (z = D
1
2 y):

zi = arg .minzT z0=0
zTD−1/2(D −W )D−1/2z

zT z
(4)

Theorem

Let A be a real symmetric matrix. Given x is orthogonal to the j − 1

smallest eigenvectors x1, ..., xj−1,
xTAx

xT x
is minimized by the next smallest

eigenvector xj and its minimum value is corresponding λj .

Thus the second smallest eigenvector of the eigensystem gives us
the real valued solution to our normalized cut problem
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Trailing

The generalized eigensystem can be transformed into a standard
eigenvalue problem of D−1/2(D −W )D−1/2x = λx

Takes O(n3) operations (n =| V |).
Impractical when n is pixels in a high dimension image!

• graphs are locally connected and resulting eigensystems are very
sparse

• only top few eigenvectors are needed for partitioning

• precision requirement for eigenvectors is very low, except the right
sign bit

Lancoz Method
Running time O(mn) + O(mM(n))
m - maximum matrix-vector computations
M(n) - cost of a matrix-vector computation of Ax where
A = D−1/2(D −W )D−1/2

W is sparse → A is sparse → matrix vector computation is O(n)
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Creating and stabilizing the partition

Our eigenvectors take continuous values

Splitting point of partitioning is needed.

1 Zero or median may be possible candidate

2 Check l evenly spaced splitting points and compute the best NCut
among them

Approach for stabilizing:
Ignore eigenvectors having smoothly varying eigenvector values
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Implementation

Images : Matrices of pixel values (Channels)

• Range of pixel values: 0 - 255

• Black and white Images - 1 channel

• Colored images - 3 channels(RGB)

Scikit-image : Image processing library in python

• Has algorithms for image segmentation(including Ncut)

Ncut function in scikit-image library -

• Based on the paper we are discussing

• Creates a Region Adjacency Graph (RAG)

• Recursively performs a Normalized Cut on the RAG
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Implementation

For our implementation, we use a 3468 x 4624 pixels image.

Figure: Original image
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Implementation

We then tried segmentation using different number of segments, the
output for which is as follows -

Figure: Segmented images
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Implementation

Comparing the original image and a segmented image -

Figure: Comparision

The full code for the image segmentation performed above can be found here -
https://github.com/Swastikamohapatra/Normalized-cut-Image-segmentation
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Comparision

The normalized cut formulation has a certain resemblance to the average
cut, as well as the average association formulation. All three of these
algorithms can be reduced to solving certain eigenvalue systems.

Figure: Comparision
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Illustration

To illustrate these above said points, we consider a set of randomly
distributed data in 1 Dimension. The 1 Dimensional data is made up of
two subsets of points:-

• The first 20 points are randomly distributed from 0 to 0.5.

• The remaining 12 points are randomly distributed from 0.65 to 1

Figure: 1D Data set
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Graph

Making a Weighted Graph out of the data set:

• Node = Data Points

• weight = Inversely Proportional to the distance between two Nodes

• Three Monotonically decreasing Weight function with different rate of
fall-off:

• w(x) = e(−d(x)/−0.1)2

• w(x) = 1− d(x)
• w(x) = e(−d(x)/−0.2)

Where d(x) is a distance function
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First Function

First Function: w(x) = e(−d(x)/−0.1)2

Figure: Weight function Figure: Graph weight matrix

Note:-

• This function has the fastest decreasing rate among the three.
• Weight is represented by brightness(i.e. higher the weight higher the
brightness and vice versa.

• With this weight function, only close-by points are connected.
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First Function

Findings/Observation:-

• Using the second extreme eigenvector, both Normalized and Average
Cut partitioned the data point into two clusters which is the true
situation

• Average Association fails to do the right clustering. It partitioned the
data point into isolated small clusters because of its bias towards
finding “tight” clusters.
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Second Function

Second Function: w(x) = 1 − d(x)

Figure: Weight function Figure: Graph weight matrix

Note:-

• This function has the slowest decreasing rate among the three.

• With this weight function, most points have non trivial connection to
the rest.
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Second Function

Findings/Observation:-

• Normalized Cut gives the right partition.
• Average Association also gives the right partition because it easily
finds the two the two tight cluster by eliminating few edges with
heavy weight across the two clusters.

• Average cut fails because the cluster on the right has less
within-group similarity comparision with the cluster on the left. Thus
average has trouble deciding on where to cut.
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Third Function

Third Function: w(x) = e(−d(x)/−0.2)

Figure: Weight function Figure: Graph weight matrix

Note:-

• This function has the moderate decreasing rate among the three.

• with this weight function, the nearby-point connections are balanced
against far-away point connections. .

Linear Algebra and its Applications [0.2in] Gauranga Kumar Baishya (MDS202325) Hiba AP (MDS202326) Esha Bhattacharyya (MDS202324)Normalized Cuts and Image Segmentation February 11, 2025 33 / 37



Third Function

Findings/Observation:-

• Normalized cut produces a more clearer solution than the other two
because it somehow balance the goal of “Clustering” and
“Segmentation”.

Hence, Normalized cut performs well for all these three situation.
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Conclusion

• Finally, we got a grouping algorithm that focuses on perceptual
grouping and aims to extract the global impression of a picture.

• Minimizing Normalized Cut(unbiased measure of disassociation
between subgroups of a graph) leads to directly maximizing the
Normalized Association(unbiased measure for total association within
the subgroups).
Ncut(A,B) = 2− Nassoc(A,B)

• Converting the problem of computing the minimum Normalized cut
into a problem of solving a generalized eigenvalue system, makes the
algorithm more efficient.
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Thank You
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